Ordered sets : proceedings of the NATO Advanced Study Institute held at Banff, Canada, August 28 to September 12, 1981
edited by Ivan Rival.
Dordrecht, Holland : D. Reidel, ©1982.
xviii, 966 págs. : ilustraciones ; 25 cm.
Serie: NATO advanced study institutes series. Series C, Mathematical and physical sciences ; v. 83
ISBN: 9027713960
Bibliografía: p. 865-966.
Reseña: MathSciNet, 83e:06003
Contenido
- Bjarni Jónsson, "Arithmetic of ordered sets", pp. 3–41.
- B. A. Davey and D. Duffus, "Exponentiation and duality", pp. 43–95.
- Ivan Rival, "The retract construction", pp. 97–122.
- R. Bonnet and M. Pouzet, "Linear extensions of ordered sets", pp. 125–170.
- David Kelly and William T. Trotter, "Jr., Dimension theory for ordered sets", pp. 171–211.
- R. L. Graham, "Linear extensions of partial orders and the FKG inequality", pp. 213–236.
- James E. Baumgartner, "Order types of real numbers and other uncountable orderings", pp. 239–277.
- E. C. Milner and M. Pouzet, "On the cofinality of partially ordered sets", pp. 279–298.
- George F. McNulty, "Infinite ordered sets, a recursive perspective", pp. 299–330.
- R. P. Dilworth, "The role of order in lattice theory", pp. 333–353.
- Ralph Freese, "Some order-theoretic questions about free modular lattices", pp. 355–377.
- Michael W. Mislove, "An introduction to the theory of continuous lattices", pp. 379–406.
- Garrett Birkhoff, "Ordered sets in geometry", pp. 407–443.
- Rudolf Wille, "Restructuring lattice theory: an approach based on hierarchies of concepts", pp. 445–470.
- Douglas B. West, "Extremal problems in partially ordered sets", pp. 473–521.
- Robert W. Quackenbush, "Enumeration in classes of ordered structures", pp. 523–554.
- Curtis Greene, "The Möbius function of a partially ordered set", pp. 555–581.
- A. Björner, A. M. Garsia and R. P. Stanley, "An introduction to Cohen-Macaulay partially ordered sets", pp. 583–615.
- A. J. Hoffman, "Ordered sets and linear programming", pp. 619–654.
- E. L. Lawler and J. K. Lenstra, "Machine scheduling with precedence constraints", pp. 655–675.
- Dana S. Scott, "Some ordered sets in computer science", pp. 677–718.
- J.-P. Barthélemy, Cl. Flament and B. Monjardet, "Ordered sets and social sciences", pp. 721–758.
- K. P. Bogart, "Some social science applications of ordered sets", pp. 759–787.
- "Problem sessions", pp. 789–861.